Главная > Математика > Элементы векторного исчисления
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

3. Правило разложения векторно-векторного произведения.

Чтобы сформулировать общее правило разложения векторно-векторного произведения, мы предварительно из найденной формулы (4.11) выведем формулу разложения для произведения а в котором сначала перемножаются два последних множителя.

Переставив в этом произведении первый множитель на последнее место, мы получим

Примепим теперь к произведению в фигурных скобках пашу формулу разложения (4.11), заменив в ней с соответственно на Мы получим

или окончательно:

Обе полученные формулы (4.11) и (4.13) объединяются следующим правилом разложения векторно-векторного произведения.

Правило. Векторно-векторное произведение трех векторов равно среднему вектору, умноженному на скалярное произведение крайних, минус тот крайний вектор, который заключен в скобки, умноженный на скалярное произведение двух остальных векторов.

Замечание. Из формул (4.11) и (4.13) непосредственно следует, что в общем случае

т. е., вообще говоря, для векторно-векторного произведения закон сочетательности силы не имеет.

<< Предыдущий параграф Следующий параграф >>
Оглавление