Главная > Физика > Ядерная физика
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

§ 15. ЗАКОНЫ РАДИОАКТИВНОГО РАСПАДА

Изменение числа радиоактивных ядер во времени. Резерфорд и Содди в 1911 г., обобщая экспериментальные результаты, показали, что атомы некоторых элементов испытывают последовательные превращения, образуя радиоактивные семейства, где каждый член возникает из предыдущего и, в свою очередь, образует последующий.

Это удобно проиллюстрировать на примере образования радона из радия. Если поместить в запаянную ампулу то анализ газа через несколько дней покажет, что в нем появляется гелий и радон. Гелий устойчив, и поэтому он накапливается, радон же сам распадается. Кривая 1 на рис. 29 характеризует закон распада радона в отсутствие радия. При этом на оси ординат отложено отношение числа нераспавшихся ядер радона к их начальному числу Видно, что убывание содержания идет по экспоненциальному закону. Кривая 2 показывает, как изменяется число радиоактивных ядер радона в присутствии радия.

Опыты, проведенные с радиоактивными веществами, показали, что никакие внешние условия (нагревание до высоких температур,

магнитные и электрические поля, большие давления) не могут повлиять на характер и скорость распада.

Радиоактивность является свойством атомного ядра и для данного типа ядер, находящихся в определенном энергетическом состоянии, вероятность радиоактивного распада за единицу времени постоянна.

Рис. 29. Зависимость числа активных ядер радона от времени

Так как процесс распада самопроизвольный (спонтанный), то изменение числа ядер из-за распада за промежуток времени определяется только количеством радиоактивных ядер в момент и пропорционально промежутку времени

где постоянная, характеризующая скорость распада. Интегрируя (37) и считая, что получаем

т. е. число ядер убывает по экспоненциальному закону.

Этот закон относится к статистическим средним величинам и справедлив лишь при достаточно большом числе частиц. Величина X называется постоянной радиоактивного распада, имеет размерность и характеризует вероятность распада одного атома в одну секунду.

Для характеристики радиоактивных элементов вводится также понятие периода полураспада Под ним понимается время, в течение которого распадается половина наличного числа атомов. Подставляя условие в уравнение (38), получим

откуда, логарифмируя, найдем, что

и период полураспада

При экспоненциальном законе радиоактивного распада в любой момент времени имеется отличная от нуля вероятность найти еще не распавшиеся ядра. Время жизни этих ядер превышает

Наоборот, другие ядра, распавшиеся к этому времени, прожили разное время, меньшее Среднее время жизни для данного радиоактивного изотопа определяется как

Обозначив получим

откуда

Следовательно, среднее время жизни радиоактивного ядра равно обратной величине от постоянной распада Я. За время первоначальное число ядер уменьшается в раз.

Для обработки экспериментальных результатов удобно представить уравнение (38) в другой форме:

Величина называется активностью данного радиоактивного препарата, она определяет число распадов в секунду. Активность является характеристикой всего распадающегося вещества, а не отдельного ядра. Практической единицей активности является кюри. 1 кюри равно ислу распавшихся ядер содержащихся в радия за 1 сек распадов/сек). Используются и более мелкие единицы — милликюри и микрокюри . В практике физического эксперимента используется иногда другая единица активности — Резерфорд распадов/сек.

Статистический характер радиоактивного распада. Радиоактивный распад — явление принципиально статистическое. Мы не можем сказать, когда именно распадется данное ядро, а можем лишь указать, с какой вероятностью оно распадается за тот или иной промежуток времени.

Радиоактивные ядра не «стареют» в процессе своего существования. К ним вообще неприменимо понятие возраста, а можно лишь говорить о среднем времени их жизни.

Из статистического характера закона радиоактивного распада следует, что он выполняется строго, когда велико, а при небольших должны наблюдаться флуктуации. Число распадающихся ядер в единицу времени должно флуктуировать вокруг среднего значения, харак теризуемого приведенным выше законом. Это подтверждается экспериментальными измерениями числа -частиц, испускаемых радиоактивным веществом в единицу времени.

Рис. 30. Зависимость логарифма активности от времени

Флуктуации подчиняются закону Пуассона. Производя измерения с радиоактивными препаратами, надо всегда это учитывать и определять статистическую точность опытных результатов.

Определение постоянной распада X. При определении постоянной распада X радиоактивного элемента опыт сводится к регистрации числа частиц, вылетающих из препарата за единицу времени, т. е. определяется его активность Затем строится график изменения активности со временем, обычно в полулогарифмическом масштабе. Вид получаемых зависимостей при исследованиях чистого изотопа, смеси изотопов или радиоактивного семейства оказывается различным.

Рассмотрим в качестве примера несколько случаев.

1. Исследуется один радиоактивный элемент, при распаде которого образуются стабильные ядра. Логарифмируя выражение (41), получим

Следовательно, в этом случае логарифм активности является линейной функцией времени. График этой зависимости имеет вид прямой, тангенс угла наклона которой (рис. 30)

2. Исследуется радиоактивное семейство, в котором происходит целая цепь радиоактивных превращений. Ядра, получающиеся после распада, в свою очередь сами оказываются радиоактивными:

Примером такой цепочки может служить распад:

Найдем закон, описывающий в этом случае изменение числа радиоактивных атомов во времени. Для простоты выделим всего два элемента: считая А исходным, а В промежуточным.

Тогда изменение числа ядер А и ядер В определится из системы уравнений

Количество ядер А убывает за счет их распада, а количество ядер В убывает из-за распада ядер В и возрастает за счет распада ядер А.

Если при имеется ядер А, а ядер В нет, то начальные условия запишутся в виде

Решение уравнений (43) имеет вид

и полная активность источника, состоящего из ядер А и В:

Рассмотрим теперь зависимость логарифма радиоактивности от времени при разных соотношениях между и

1. Первый элемент короткоживущий, второй — долгоживущий, т. е. . В этом случае кривая, показывающая изменение суммарной активности источника, имеет вид, представленный на рис. 31, а. В начале ход кривой определяется в основном быстрым уменьшением числа активных ядер ядра В тоже распадаются, но медленно, и поэтому их распад не очень сильно влияет на наклон кривой на участке . В дальнейшем ядер типа А остается в смеси изотопов мало, и наклон кривой определяется постоянной распада Если нужно найти и то по наклону кривой при большом значении времени находят (в выражении (45) первый экспоненциальный член в этом случае может быть отброшен). Для определения величины надо учесть также влияние распада долгоживущего элемента на наклон первой части кривой. Для этого экстраполируют прямую в область малых времен, в нескольких точках вычитают из суммарной активности активность, определяемую элементом В, по полученным значениям

строят прямую для элемента А и по углу находят (при этом надо переходить от логарифмов к антилогарифмам и обратно).

Рис. 31. Зависимость логарифма активности смеси двух радиоактивных веществ от времени: а — при при

2. Первый элемент долгоживущий, а второй короткоживущий: Зависимость в этом случае имеет вид, представленный на рис. 31,б. В начале активность препарата увеличивается за счет накопления ядер В. Затем наступает радиоактивное равновесие, при котором отношение числа ядер А к числу ядер В становится постоянным. Этот тип равновесия называется переходным. Спустя некоторое время, оба вещества начинают убывать со скоростью распада материнского элемента.

3. Период полураспада первого изотопа много больше второго (следует заметить, что период полураспада некоторых изотопов измеряется миллионами лет). В этом случае через время устанавливается так называемое вековое равновесие, при котором количество ядер каждого изотопа пропорционально периоду полураспада этого изотопа. Соотношение

показывает, что число раепадов дочернего вещества равно числу распадов материнского вещества т. е. числу, образующихся при этом ядер вещества (при условии, что

Радиоактивные ряды (семейства). В случае, когда имеется более двух генетически связанных друг с другом элементов, говорят о существовании радиоактивного ряда. Для такого случая выражение, определяющее число ядер А-того элемента, имеет вид

где константы определяются характеристиками отдельных элементов.

Тяжелые ядра с массовым числом превышающим подвержены -распаду вследствие того, что в них велика роль кулоновской энергии. Если при этом массовое число намного превышает 208, то ядро переходит в стабильное путем цепи последоватальных распадов. Однако не все распады в этой цепи являются -распадами. При каждом -распаде массовое число уменьшается на 4 единицы, а число протонов — только на два, и поэтому процент нейтронов увеличивается. В результате после потери нескольких -частиц ядро становится склонным к -распаду, при котором внутри ядра один из нейтронов превращается в протон по схеме . В радиоактивных рядах процессы -распада и -распада поэтому обычно чередуются друг с другом.

При -распаде массовое число А изменяется на 4, а при -распаде совсем не изменяется. Поскольку остаток от деления на 4 одинаков для всех ядер одного и того же ряда, для данного семейства А может быть выражено формулой:

где С — постоянное для ряда число, а принимает целочисленные значения.

В принципе могут существовать только четыре различных радиоактивных ряда (табл. 1), в которых А равно

Радиоактивный ряд обычно начинается с изотопа, время жизни которого очень велико и близко к времени жизни Земли лет (имеются, правда, и исключения).

Таблица 1 (см. скан)

В третьем ряду родоначальником ряда был плутоний лет, но он успел распасться и в естественном виде не обнаруживается.

Последний ряд был предсказан теоретически и создан в лабораторных условиях после усовершенствования методов искусственного получения изотопов. Естественный изотоп за время существования Земли давно распался и настоящее время в земной коре тоже практически отсутствует.

Из сравнения периодов полураспада родоначальников становится ясно, почему в земле очень много тория и почему в естественной смеси изотопов значительно больше, чем Приведем в качестве примера превращения, происходящие в ряду тория (табл. 2).

Таблица 2 (см. скан)

<< Предыдущий параграф Следующий параграф >>
Оглавление