Главная > Физика > Квантовая теория
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

5. Собственные функции операторов «сигма».

Волновую функцию можно выразить в виде матрицы-столбца как в гл. 16. п. 9, где дает вероятность того, что дает вероятность того, что Для нормировки волновой функции необходимо потребовать, чтобы

Если волновая функция является функцией от х, то распределение направлений спина может зависеть от положения. Поэтому в наиболее общем случае будут различными функциями от х и волновую функцию можно записать в виде матрицы-столбца где

Это означает, что существование спина приводит к использованию двух волновых функций вместо одной. Если спин не зависит от положения, то обе функции будут зависеть от х одинаково, так что волновую функцию можно представить в виде такого произведения:

Нормированные волновые функции, соответствующие имеют вид

Для проверки ортогональности двух волновых функций нужно вычислить произведение

Очевидно, что и ортогональны.

<< Предыдущий параграф Следующий параграф >>
Оглавление