Главная > Разное > Основы теплопередачи
<< Предыдущий параграф
Следующий параграф >>
<< Предыдущий параграф Следующий параграф >>
Макеты страниц

ГЛАВА ВТОРАЯ. КОНВЕКТИВНЫЙ ТЕПЛООБМЕН

2-1. ОБЩИЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

Конвективным теплообменом или теплоотдачей называется процесс переноса теплоты между поверхностью твердого тела и жидкой средой. Приэтом перенос теплоты осуществляется одновременным действием теплопроводности и конвекции.

Явление теплопроводности в жидкостях и газах, так же как и в твердых телах, вполне определяется коэффициентом теплопроводности и температурным градиентом (см. гл. 1). Иначе обстоит дело с явлением конвекции — вторым элементарным видом распространения теплоты. Здесь процесс переноса теплоты неразрывно связан с переносом самой среды. Поэтому конвекция возможна лишь в жидкостях и газах, частицы которых могут легко перемещаться.

По природе возникновения различают два вида движения — свободное и вынужденное. Свободным называется движение, происходящее вследствие разности плотностей нагретых и холодных частиц жидкости в гравитационном поле. Возникновение и интенсивность свободного движения определяются тепловыми условиями процесса и зависят от рода жидкости, разности температур, напряженности гравитационного поля и объема пространства, в котором протекает процесс. Свободное движение называется также естественной конвекцией. Вынужденным называется движение, возникающее под действием посторонних возбудителей, например насоса, вентилятора и пр. В общем случае наряду с вынужденным движением одновременно может развиваться и свободное. Относительное влияние последнего тем больше, чем больше разность температур в отдельных точках жидкости и чем меньше скорость вынужденного движения.

Интенсивность конвективного теплообмена характеризуется коэффициентом теплоотдачи а, который определяется по формуле Ньютона—Рихмана

Согласно этому закону тепловой поток Q пропорционален поверхности теплообмена F и разности температур стенки и жидкости .

Коэффициент теплоотдачи можно определить как количество теплоты, отдаваемое в единицу времени единицей поверхности при разности температур между поверхностью и жидкостью, равной одному градусу:

В общем случае коэффициент теплоотдачи может изменяться вдоль поверхности теплообмена, и поэтому различают средний по поверхности коэффициент теплоотдачи и местный (локальный) коэффициент теплоотдачи, соответствующий единичному элементу поверхности.

Процессы теплоотдачи неразрывно связаны с условиями движения жидкости. Как известно, имеются два основных режима течения: ламинарный и турбулентный. При ламинарном режиме течение имеет спокойный, струйчатый характер. При турбулентном — движение неупорядоченное, вихревое (рис. 2-1). Изменение режима движения происходит при некоторой «критической» скорости, которая в каждом конкретном случае различна.

В результате специальных исследований О. Рейнольдс в 1883 г. установил, что в общем случае режим течения жидкости определяется не только одной скоростью, а особым безразмерным комплексом , состоящим из скорости движения жидкости w, кинематического коэффициента вязкости жидкости v и характерного размера l канала или обтекаемого тела. Теперь такой комплекс называется числом Рейнольдса и обозначается символом .

Переход ламинарного режима в турбулентный происходит при критическом значении этого числа . Например, при движении жидкости в трубах .

Рис. 2-1. Характер движения жидкости в трубе при ламинарном (а), переходном (б) и турбулентном (б) режимах.

Рис. 2-2. Характер изменения температуры в пограничном слое при нагревании жидкости.

При турбулентном движении весь поток насыщен беспорядочно движущимися вихрями, которые непрерывно возникают и исчезают. В точности механизм вихреобразования еще не установлен. Одной из причин их возникновения является потеря устойчивости ламинарного течения, сопровождающаяся образованием завихрений, которые затем диффундируют в ядро и, развиваясь, заполняют весь поток. Одновременно с этим вследствие вязкости жидкости эти вихри постепенно затухают и исчезали. Благодаря непрерывному образованию вихрей и их диффузии происходит сильное перемешивание жидкости, называемое турбулентным смешением. Чем больше вихрей, тем интенсивнее перемешивание жидкости и тем больше турбулентность. Различают естественную и искусственную турбулентность. Первая устанавливается естественно. Для случая стабилизированного движения внутри гладкой трубы турбулентность вполне определяется значением числа Re. Вторая вызывается искусственным путем вследствие наличия в потоке каких-либо преград, турбулизирующих решеток и других возмущающих источников. Однако при любом виде турбулентности в тонком слое у поверхности из-за наличия вязкого трения течение жидкости затормаживается и скорость падает до нуля. Этот слой принято называть вязким подслоем.

Для процессов теплоотдачи режим движения рабочей жидкости имеет очень большое значение, так как им определяется механизм переноса теплоты. При ламинарном режиме перенос теплоты в направлении нормали к стенке в основном осуществляется путем теплопроводности. При турбулентном режиме такой способ переноса теплоты сохраняется лишь в вязком подслое, а внутри турбулентного ядра перенос осуществляется путем интенсивного перемешивания частиц жидкости.

В этих условиях для газов и обычных жидкостей интенсивность теплоотдачи в основном определяется термическим сопротивлением пристенного подслоя, которое по сравнению с термическим сопротивлением ядра оказывается определяющим. В этом легко убедиться, если проследить за изменением температуры жидкости в направлении нормали к стенке (рис. 2-2). Как видно, наибольшее изменение температуры происходит в пределах тонкого слоя у поверхности, через который теплота передается путем теплопроводности. Следовательно, как для ламинарного, так и для турбулентного режима течения вблизи самой поверхности применим закон Фурье:

где — градиент температуры в слоях жидкости, прилегающих к поверхности твердого тела.

Процесс теплоотдачи является сложным процессом, а коэффициент теплоотдачи является сложной функцией различных величин, характеризующих этот процесс. В общем случае коэффициент теплоотдачи является функцией формы Ф, размеров , температуры поверхности нагрева скорости жидкости w, ее температуры , физических свойств жидкости — коэффициента теплопроводности 1, удельной теплоемкости плотности , коэффициента вязкости и других факторов:

В качестве теплоносителей в настоящее время применяются самые разнообразные вещества — воздух, газы, вода, масла, бензол, нефть, бензин, спирты, расплавленные металлы и различные специальные смеси. В зависимости от рода и физических свойств этих веществ теплоотдача протекает различно и своеобразно. Для каждого теплоносителя физические свойства имеют определенные значения и, как правило, являются функцией температуры, а некоторые — и давления.

Коэффициент теплопроводности характеризует способность вещества проводить теплоту (см. гл. 1).

Удельная теплоемкость определяет количество теплоты, необходимое для нагревания 1 кг вещества на один градус. Удельная теплоемкость при постоянном давлении обозначается (изобарная теплоемкость), а при постоянном объеме — (изохорная теплоемкость).

Плотность вещества р представляет собой отношение его массы к объему.

Коэффициент температуропроводности характеризует скорость изменения температуры в теле (см. гл. 7).

Вязкость. Все реальные жидкости обладают вязкостью; между частицами или слоями, движущимися с различными скоростями, всегда возникает сила внутреннего трения, противодействующая движению.

Согласно закону вязкого трения Ньютона эта касательная сила, отнесенная к единице поверхности, пропорциональна изменению скорости в направлении нормали к этой поверхности:

Величина называется коэффициентом вязкости или динамическим коэффициентом вязкости.

При , следовательно, коэффициент вязкости выражает собой силу трения, приходящуюся на единицу поверхности соприкосновения двух жидких слоев, «скользящих» друг по другу при условии, что на единицу длины нормали к поверхности скорость движения изменяется на единицу.

В уравнения гидродинамики и теплопередачи часто входит отношение коэффициента вязкости к плотности, называемое кинематическим коэффициентом вязкости:

Температурный коэффициент объемного расширения р характеризует относительное изменение объема при изменении температуры на один градус (при постоянном давлении):

где — удельный объем, м3/кг.

Для газов температурный коэффициент объемного расширения определяется по формуле

<< Предыдущий параграф Следующий параграф >>
Оглавление